Компьютеры        22.11.2023   

Что такое спектрофотометр? Спектрофотометр - принцип работы Источник излучения для спектрофотометр с дифракционной решеткой.

Фотометрические исследования проводят с помощью фотоколориметров и спектрофотометров. Измерение оптической плотности стандартного и исследуемого окрашенных растворов всегда производят по отношению к раствору сравнения (нулевому раствору). В качестве раствора сравнения можно использовать часть исследуемого раствора, содержащего все добавляемые компоненты, кроме реагента, образующего с определенным веществом окрашенное соединение. Если раствор сравнения при этом остается бесцветным и, следовательно, не поглощает лучей в видимой области спектра, то в качестве раствора сравнения можно использовать дистиллированную воду.

Устройство и принцип действия фотометрических приборов рассмотрим на примере фотоэлектрических концентрационных колориметров КФК-2, КФК-3 и спектрофотометра СФ-46.

Однолучевой фотометр КФК-2 предназначен для измерения пропускания, оптической плотности и концентрации окрашенных растворов, рассеивающих взвесей, эмульсий и коллоидных растворов в области спектра 315-980 нм. Пределы измерения пропускания - 5-100 % (D = 0-1,3). Основная абсолютная погрешность измерения пропускания - 1 %.

Принципиальная оптическая схема фотоколориметра КФК-2 представлена на рис. 2.16.

Свет от галогенной малогабаритной лампы проходит последовательно через систему линз, теплозащитный 2, нейтральный 3, выбранный цветной 4 светофильтры, кювету 5 с раствором, попадает на пластину 6, которая делит световой поток на два: 10 % света направляется на фотодиод (при измерениях в области спектра 590-980 нм) и 90 % - на фотоэлемент (при измерениях в области спектра 315-540 нм).

Характеристики светофильтров представлены в табл. 2.2.

Рис. 2.16.

  • 1 - источник света; 2 - теплозащитный светофильтр;
  • 3 - нейтральный светофильтр; 4 - цветной светофильтр;
  • 5 - кювета с исследуемым раствором или раствором сравнения;
  • 6 - пластина, которая делит световой поток на два потока;
  • 7 - фотодиод; 8 - фотоэлемент

Таблица 2.2

Спектральные характеристики светофильтров к фотоколориметру КФК-2

Маркировка на диске

Маркировка

светофильтра

Длина волны, соответствующая максимуму пропускания, нм

(рис. 2.17) предназначен для выполнения химических анализов растворов. Его принципиальная оптическая схема представлена на рис. 2.18.

Нить лампы 1 изображается конденсором 2 в плоскости диафрагмы Д, заполняя светом щель диафрагмы. Далее диафрагма Д изображается вогнутой дифракционной решеткой 4 и вогнутым зеркалом 5 в плоскости такой же щелевой диафрагмы Д.,. Дифракционная решетка 6 и зеркало создают

Рис. 2.17.


Рис. 2.18.

  • 1 - нить лампы; 2 - конденсор; 3 - световой фильтр;
  • 4 - вогнутая дифракционная решетка; 5 - вогнутое зеркало;
  • 6 - дифракционная решетка; 7,8 - объектив; 9 - кюветы;
  • 10 - линза; 11 - приемник

в плоскости диафрагмы Д 2 растянутую картину спектра. Поворачивая дифракционную решетку вокруг оси, параллельной штрихам решетки, щелью диафрагмы Д., выделяют излучение любой длины волны от 315 до 990 нм. Объектив 7, 8 создает в кюветном отделении слабо светящийся пучок света и формирует увеличенное изображение щели Д 2 перед линзой 10. Линза 10 сводит пучок света на приемнике 11 в виде равномерно освещенного светового кружка. Для уменьшения влияния рассеянного света в ультрафиолетовой области спектра за диафрагмой Д 1 установлен световой фильтр 3, который работает в схеме при измерениях в спектральной области 315-400 нм, а затем автоматически выводится. В кю- ветное отделение (между объективом 7,8 и линзой 10) устанавливаются прямоугольные кюветы 9.

Фотоэлектроколориметр КФК-3 имеет следующие технические характеристики:

  • - спектральный диапазон - 315-990 нм;
  • - спектральный интервал, выделяемый монохроматором фотометра - не более 7 нм;
  • - предел измерения коэффициента пропускания - 0,1-100%;
  • - предел измерения оптической плотности - 0-3;
  • - предел допускаемой основной абсолютной погрешности установки длины волны - 3 нм;
  • - напряжение сети переменного тока - 220 ± 22 В;
  • - частота сети переменного тока - 50-60 Гц;
  • - потребляемая мощность - не более 60 В х А;
  • - габаритные размеры - 500 мм х 360 мм х 165 мм;
  • - масса - 15 кг.

Спектрофотометр СФ-46 предназначен для измерения спектральных коэффициентов пропускания жидких и твердых веществ в области спектра 190-1100 нм. Диапазон измерения спектральных коэффициентов пропускания - от 1 до 100 %. Абсолютная погрешность измерения не превышает 1 %, а стандартное отклонение пропускания - не более 0,1 %.

Спектрофотометр СФ-46 - стационарный прибор, рассчитанный на эксплуатацию в лабораторных помещениях без повышенной опасности поражения электрическим током.

В основу работы спектрофотометра СФ-46 (рис. 2.19) положен принцип измерения отношения двух световых потоков: потока, прошедшего через исследуемый образец, и потока, падающего на исследуемый образец (или прошедшего через контрольный образец).


Рис. 2.19.

Световой пучок от осветителя попадает в монохроматор через входящую щель и разлагается дифракционной решеткой в спектр. В монохроматический поток излучения, поступающий из выходной щели в кюветное отделение, поочередно вводятся контрольный и исследуемый образцы. Излучение, прошедшее через образец, попадает на катод фотоэлемента в приемно-усилительном блоке. Электрические сигналы на резисторе, включенном в анодную цепь фотоэлемента, пропорциональны потокам излучения, падающим на фотокатод.

Усилитель постоянного тока с коэффициентом усиления, близким к единице, обеспечивает передачу сигналов на вход микропроцессорной системы (МПС), которая по команде оператора поочередно измеряет и запоминает напряжения U т, U Q и U, пропорциональные темновому току фотоэлемента, потоку, прошедшему через контрольный образец, и потоку, прошедшему через исследуемый образец. После измерения МПС рассчитывает коэффициент пропускания исследуемого образца по формуле

В режиме определения оптической плотности образца МПС начислит оптическую плотность по формуле D = -lgТ.

Значение измеренной величины высвечивается на цифровом фотометрическом табло.

На рисунке 2.20 представлена оптическая схема спектрофотометра СФ-46.


Рис. 2.20. Оптическая схема спектрофотометра СФ-46:

  • 1,1"- источники излучения; 2 - зеркальный конденсатор;
  • 3, 10 - поворотные зеркала; 4, 8, 9 - линзы; 5 - входная щель;
  • 6 - дифракционная решетка; 7 - выходная щель;
  • 11, 12 - фотоэлементы

Изучение от источника 1 или 1" падает на зеркальный конденсатор 2, который направляет его на плоское поворотное зеркало 3 и дает изображение источника излучения в плоскости линзы 4 , расположенной вблизи входной щели 5 монохроматора. Прошедшее через входную щель излучение падает на вогнутую дифракционную решетку 6 с переменным шагом и криволинейным штрихом. Решетка изготовляется на сферической поверхности, поэтому помимо диспергирующих свойств она обладает свойством фокусировать спектр. Применение переменного шага и криволинейного штриха значительно уменьшает аберрационное искажение вогнутой дифракционной решетки и позволяет получить высокое качество спектра во всем рабочем спектральном диапазоне.

Дифракционный пучок фокусируется в плоскости выходной щели 7 монохроматора, расположенной над входной щелью 5. Сканирование осуществляется поворотом дифракционной решетки, при этом монохроматическое излучение различных длин волн проходит через выходную щель 7 и линзу 8, контрольный или измеряемый образец, линзу 9 и с помощью поворотного зеркала 10 попадает на светочувствительный слой одного из фотоэлементов 11 или 12.

Для обеспечения работы спектрофотометра в широком диапазоне спектра используются два фотоэлемента и два источника излучения сплошного спектра.

Сурьмяно-цезиевый фотоэлемент с окном из кварцевого стекла применяется для измерения в области спектра от 186 до 700 нм, кислородно-цезиевый фотоэлемент - для измерения в области спектра от 600 до 1100 нм. Длина волны, при которой следует переходить от измерений с одним фотоэлементом к измерениям с другим фотоэлементом, указывается в паспорте.

Для чего нужен спектрофотометр?

Спектрофотометр (например, В 1200) - прибор, который измеряет степень поглощения светового потока монохромного спектра. За счет своих особенностей строения он позволяет получать максимально точные данные, т. к. незначимые для исследования факторы не оказывают на результат никакого влияния. Он настраивается на определенную чувствительность и детализацию.

Какие отделы им комплектуют?

Для начала следует сказать, что существует две разновидности фотометра : одно- и двухлучевая. С помощью первой получают фактические показатели образца, а применение второй обеспечивает возможность сравнительного анализа его с каким-либо эталоном. Исходя из основного направления той или иной лаборатории выбирают конкретную модель устройства.

В целом, спектрофотометры необходимы для вычисления концентрации тех или иных веществ в растворе, их плотности, определения структуры включений, возможности и скорости изменения показателей при модифицировании состава, выявления примесей и пр. Нередко они используются для точной классификации цветов, спектрального анализа. Из-за широкого диапазона возможностей спектрофотометры применяются в различных сферах:

  • полиграфии;
  • медицине;
  • химии;
  • биологии;
  • астрологии и т. д.

Чаще всего их устанавливают в исследовательских и промышленных лабораториях. Портативные устройства приобретают для полевых исследований, укомплектования мобильных пунктов анализа воздуха, воды, почвы и пр. Стационарные обладают большими габаритами, но значительной функциональностью, а потому отлично подходят для тех лабораторий, где регулярно проводят даже очень сложные исследования. При этом высокая скорость получения результатов позволяет внедрять их на производственные линии.

Практическое применение спектрофотометры находят в колорировании соответствующих составов для типографической деятельности, покраски автомобилей и различных предметов интерьера. Найти и приобрести нужную модель вы можете в нашем магазине. Опытные консультанты подберут вам отличный вариант под любой бюджет и задачи.

Имея общие представления о принципе измерения спектров поглощения, можно попытаться синтезировать наипростейший спектрофотометр. Схема такого прибора приведена на рис. 1.1.19.

Рис. 1.1.19.

Такая схема спектрофотометра называется однолучевой. Здесь для измерения поглощения в один и тот же монохроматический луч света необходимо поочерёдно пропускать через кювету с образцом и кювету с растворителем (контроль).

Современные модели спектрофотометров построены по двулучевому принципу. В этом типе спектрофотометров монохроматический луч периодически направляется вращающимся зеркалом по двум каналам, в один из которых помещается кювета с образцом, в другой - кювета с растворителем. Лучи проходят образец и контроль в противофазе, и разница в интенсивностях регистрируется фото- метрирующей системой с последующей автоматической записью спектра на бланке в координатах:

К таким спектрофотометрам относится двулучевой регистрирующий прибор Specord М-40, оснащенный микроЭВМ, с высокой степенью автоматизации процессов измерения и возможностью математической обработки результатов (рис. 1.1.20).

Спектрофотометр Specord М-40 предназначен для измерения спектров поглощения в широком диапазоне длин волн

Я (200-900 нм) или V (50.000-11.000 см ~ х). Волновое число v

есть величина, обратная длине волны Я, т.е. измеряется в см ~ х.

Если Я выражается в нм, то: В приборе используются два источника света - дейтериевая лампа для ультрафиолетового диапазона 200-400 нм (50.000-25.000 см" 1) и лампа накаливания для видимой и ближней инфракрасной области 400-900 нм (25.000-

11.000 см" 1). Оптика прибора рассчитана на работу во всём указанном диапазоне и собрана с использованием отражательной (зеркальной) техники (плоские зеркала, конденсоры, реплики и т.д.).

В ультрафиолетовой области используется принцип двойной мо- нохроматизации излучения дейтериевой лампы. Дифракционный двойной монохроматор, состоящий из предварительного и главного монохроматора, обеспечивает высокое качество монохроматизации ультрафиолетового света и уменьшение мешающего рассеянного излучения. При развертке спектра в видимой области в ход лучей предварительного монохроматора вводится плоское зеркало-экран, которое перекрывает лучи водородной лампы и направляет на входную щель главного монохроматора свет от лампы накаливания. Таким образом, в видимой области работает только главный монохроматор.

Рабочий диапазон ультрафиолетовых решеток в предварительном и главном монохроматоре (1302 штр/мм) находится в пределах 54.000-28.000 см" 1 , а решётки видимого диапазона (651 штр/мм) в пределах 31.000-11.000 см" 1 . Переключение решеток от работающих в ультрафиолетовой области к предназначенным для видимой области происходит автоматически при волновом числе у =30.000 см" 1 . Обе решетки относятся к решеткам первого порядка (см. выше), а для предотвращения попадания световых лучей спектров более высоких порядков при работе в видимом диапазоне автоматически вводятся светофильтры (при переключении светофильтров развертка спектра на время также автоматически прекращается).

В спектрофотометре Specord М-40 предусмотрено регулирование ширины щелей. Входная и выходная щели монохроматора жёстко связаны между собой и управляются шаговыми двигателями от ЭВМ. Возможны два режима управления щелями:

  • - с постоянной шириной щели при записи всего спектра,
  • - с переменной шириной щели, величина которой может изменяться в ходе записи спектра.

Величину спектральной ширины щели можно задавать, выбирая фиксированные значения из набора щелей от 10 см" 1 до 200 см" 1 . Развертка спектра по длинам волн в спектрофотометре Specord М-40 производится шаговыми двигателями, работа которых контролируется встроенной в прибор микроЭВМ. Таким образом, измерение спектра производится по точкам - точно фиксированным длинам волн. Выбор ширины щелей и шага (числа точек) производится в зависимости от особенностей объекта и цели исследования.

Монохроматический луч заданной спектральной ширины (интервала с известной ^Кпшструм .) модулируется и затем направляется


Рис. 1.1.20.

1. Источник ультрафиолетового излучения - дейтериевая лампа; 2. Источник видимого и инфракрасного излучения - лампа накаливания; 3. Коллиматор предварительного монохроматора (вогнутое зеркало); 4. Конденсор лампы накаливания (вогнутое зеркало); 5. Дифракционная решетка предварительного монохроматора; 6. Плоское поворотное зеркало; 7,10. Входная (7) и выходная (10) щели главного монохроматора; 8. Коллиматоры главного монохроматора (вогнутые зеркала); 9. Дифракционная решетка главного монохроматора Эберта (а - реплика для ультрафиолетовой области, б - реплика для видимой и инфракрасной области); 11. Модулятор; 12. Вогнутые тороидальные зеркала; 13. Разделяющее попеременно два луча поворотное зеркало на оси мотора; 14. Плоское поворотное зеркало; 15. Кювета с образцом; 16. Кювета с контролем; 17. Фотоумножитель (ФЭУ).

поочерёдно с помощью вращающегося плоского зеркала с прорезями (13, рис. 1.1.20) в канал с объектом или в канал с растворителем (контролем). Камера для объекта разделена на два отделения. Большой отсек предназначен для работы с прозрачными растворами, а малый - для рассеивающих свет объектов.

Прошедшие через образец и контроль лучи поочерёдно в противофазе попадают на фотоумножитель, генерируя (если есть поглощение света в образце) переменный фототок (рис. 1.1.21). Если интенсивность лучей одинакова (поглощение двух кювет одинаково), то переменный фототок на выходе ФЭУ равен 0.


Рис. 1.1.21.

В противном случае возникает переменный ток, который усиливается. Сигнал обрабатывается, и результат измерения (пропускание

или оптическая плотность ) регистрируется на

бланке самописца спектрофотометра. Весь процесс измерения спектра и его воспроизведение осуществляется под контролем мик- роЭВМ, встроенной в прибор. Компьютеризация спектрофотометра дает возможность использования программ оптимального измерения и последующей математической обработки результатов, а также сохранения в памяти ЭВМ полученной информации в постоянной готовности для обработки.

Спектрофотометрия – экспериментальный метод, который позволяет измерить концентрацию растворенных веществ по количеству поглощаемого раствором света. Высокая эффективность данного метода обусловлена тем, что различные соединения по-разному поглощают свет с той или иной длиной волны. По количеству прошедшего сквозь раствор света можно выяснить, какие соединения присутствуют в растворе, и определить их концентрации. В лабораториях для этого используют специальный прибор – спектрофотометр.

Шаги

Часть 1

Подготовка образцов

    Включите спектрофотометр. Большинству спектрофотометров необходим предварительный разогрев – это помогает получить более точные результаты. Включите прибор и подождите хотя бы 15 минут, прежде чем приступать к измерениям.

    • Используйте время разогрева прибора для подготовки образцов.
  1. Помойте кюветы и пробирки. При выполнении лабораторной работы в школе вам могут выдать одноразовые пробирки, которые не нужно чистить. Если же вы используете многоразовые кюветы или пробирки, перед работой их необходимо как следует вымыть. Тщательно помойте всю посуду деионизированной водой.

    Залейте в кювету требуемое количество исследуемой жидкости. Максимальный объем некоторых кювет составляет 1 миллилитр (мл), в то время как пробирки могут быть рассчитаны на 5 миллилитров. Для получения точных результатов необходимо, чтобы луч лазера проходил через жидкость и не задевал пустую часть емкости.

    Приготовьте контрольный раствор. Контрольный, или холостой раствор представляет собой чистый растворитель, без присутствующих в других образцах примесей. Например, если вы растворили в воде соль, в качестве холостого раствора следует взять простую воду. Если при этом вы окрасили воду в красный цвет, в качестве холостого раствора также необходимо взять красную воду. Холостой раствор должен иметь тот же объем, что и исследуемые растворы, и его следует налить в такую же емкость.

    Протрите наружную поверхность кюветы. Прежде чем поместить кювету в спектрофотометр, необходимо убедиться, что она чистая, иначе частицы грязи и пыли могут исказить результаты. Протрите безворсовой тканью стенку кюветы снаружи, чтобы удалить возможные капли воды и частички пыли.

    Часть 2

    Проведение эксперимента
    1. Выберите и задайте длину волны света для анализа образцов. Для большей точности используйте свет с одной длиной волны (монохроматический свет). Необходимо выбрать такую длину волны, чтобы свет поглощался одним из соединений, которое предположительно входит в состав исследуемого раствора. Выставьте выбранную длину волны на спектрофотометре в соответствии с инструкциями по эксплуатации прибора.

      Откалибруйте прибор по холостому раствору. Поместите в держатель спектрофотометра кювету с холостым раствором и закройте крышку прибора. Аналоговые спектрофотометры снабжены шкалой со стрелкой, угол отклонения которой определяется интенсивностью прошедшего света. В случае холостого раствора стрелка отклонится вправо. Запишите показания прибора на случай, если они понадобятся вам в дальнейшем. Затем переведите стрелку в нулевое положение с помощью ручки настройки (при этом холостой раствор должен по-прежнему оставаться в приборе).

      • Цифровые спектрофотометры вместо шкалы снабжены дисплеем, и их можно откалибровать таким же образом. Установите ноль для холостого раствора с помощью кнопок настройки.
      • Калибровка сохранится и после того, как вы достанете холостой раствор. При работе с остальными образцами свет, который поглощается беспримесным растворителем, будет автоматически вычитаться из показаний прибора.
    2. Достаньте кювету с холостым раствором и проверьте калибровку. В отсутствие холостого раствора стрелка должна остаться на нулевой отметке (или на дисплее должен сохраниться ноль). Вновь поместите в прибор холостой раствор и убедитесь в том, что спектрофотометр по-прежнему показывает ноль. При правильной калибровке прибор должен показывать ноль и с холостым раствором, и без него.

      • В случае ненулевых показаний прибора повторите калибровку с холостым раствором.
      • В случае дальнейших проблем попросите о помощи или обратитесь к обслуживающему прибор техническому персоналу.
    3. Измерьте оптическую плотность экспериментального образца. Достаньте из прибора холостой раствор и поместите в него исследуемый образец. Подождите примерно 10 минут, пока стрелка не успокоится или пока не перестанут изменяться цифры на дисплее. После этого запишите значение коэффициента пропускания и/или оптической плотности.

      • Чем больше света проходит через образец, тем меньше света он поглощает. Обычно записывают значения оптической плотности, которые имеют вид десятичной дроби, например 0,43.
      • Повторите измерения для каждого образца по меньшей мере три раза и найдите средние значения. Таким образом вы получите более точные результаты.
    4. Повторите эксперимент для других длин волн. Образец может содержать несколько неизвестных примесей, которые поглощают свет при разной длине волны. Чтобы исключить неопределенность, повторите измерения с шагом 25 нанометров для всего спектра. Это позволит вам определить другие соединения, которые входят в состав изучаемого раствора.

Спектрофотометр - это инструмент, который измеряет интенсивность излучения или количество фотонов на разных длинах волн. Этот научный инструмент также используется для исследовательских целей в молекулярной биологии для измерения роста бактерий.

Спектрофотометр идентифицирует передачу определенного вещества путем определения наблюдаемого цвета. Инструмент обычно используется для измерения концентрации РНК и . Кроме того, ферментативные и химические реакции изменяют цвет с течением времени, а спектрофотометр полезен для измерения различных изменений цвета.

Как работают спектрофотометры?

Спектрофотометр использует источник света для создания отдельных длин волн видимого света, одновременно создавая длины волн света в инфракрасном и ультрафиолетовом диапазонах. Дифракционная решетка и фильтры делят свет на отдельные длины волн, направляя небольшой диапазон длины волны через предоставленный образец. Фотодетектор преобразует свет, полученный через образец, в ток, отправленный в процессор сигналов. После того, как процессор сигналов преобразует ток, значения концентрации, поглощающая способность и коэффициент пропускания отображаются на цифровом дисплее прибора.

Устройство спектрофотометра

Каковы компоненты спектрофотометра?

Спектрофотометр имеет несколько частей, которые включают фильтр, фотодетектор, источник света и процессор сигналов. Однако два основных компонента состоят из фотометра и спектрометра. Фотометр измеряет интенсивность света, в то время как спектрометр измеряет, производит и рассеивает свет. Эти компоненты объединяются, образуя два разных типа спектрофотометра.

Типы спектрофотометров

  1. однолучевой;
  2. двухлучевой;
Существуют однолучевой спектрофотометр и двухлучевой спектрофотометр. Спектрофотометр с двойным лучом сравнивает интенсивность света между двумя световыми путями, в то время как однолучевой спектрофотометр измеряет интенсивность света до и после каждого образца. Спектрофотометр с двойным лучом измеряет коэффициент отражения различных жидких растворов и образца для испытаний, прежде чем давать точные значения на цифровом дисплее. Однако эти значения варьируются от 20 до 2500 нанометров.

Как использовать спектрофотометры?

Для использования спектрофотометра очистите кювету. Важно надеть перчатки, так как любые отпечатки пальцев или грязь, могут повлиять на результаты. Затем добавьте раствор и установите спектрофотометр на предпочтительную длину волны. Поместите пустую кювету внутрь инструмента и нажмите кнопку «установить нуль», чтобы калибровать прибор на желаемую длину волны. Добавьте решение для расчета поглощающей способности.

Закон Беэр-Ламберта в Спектрофотометрии

Для использования спектрофотометра важно понимать само понятие "спектр света" и знать закон Бера-Ламберта . Спектр состоит из радуги цветов, создаваемых, когда композитный свет, такой как белый свет, разделяется на несколько компонентных цветов. Спектрофотометрия использует источник света, коллиматор, монохроматор, раствор и детектор.

Уравнение закона Беэр-Ламберта показывает линейную зависимость между впитывающей способностью и концентрацией образца. Это понимание требует определения того, что поглощающая способность прямо пропорциональна длине пути кюветы, а также любому поглощению предпочтительного образца. Реакции измеряются увеличением поглощения, поскольку наблюдаются изменения цвета. Научные машины, такие как спектрофотометры или , помогают улучшить исследования в лабораториях химии, биологии и биохимии.

Где применяется спектрофотометр и как измеряет? Все, что Вы должны знать

Как уже говорилось, спектрофотометр является одним из научных инструментов, широко распространенных во многих исследовательских и промышленных лабораториях. Спектрофотометры используются для исследований в лабораториях физики, молекулярной биологии, химии и биохимии. Как правило, название относится к ультрафиолетовой видимой (UV-Vis) спектроскопии.

Энергия света зависит от длины волны, обычно обозначаемой как лямбда. Хотя электромагнитный спектр распространяется в огромном диапазоне длин волн, большинство лабораторий может измерять только небольшую их часть. UV-Vis Spectroscopy измеряет от 200 до 400 нанометров (нм) для измерений ультрафиолетового света и до приблизительно 750 нм в видимом спектре.

Для УФ-видимой спектроскопии образцы обычно содержатся и измеряются в небольших контейнерах, называемых кюветами. Они могут быть пластичными, если используются в видимом спектре, но должны быть кварцевыми или плавлеными кварцами, если используются для измерений в ультрафиолетовых лучах. Есть некоторые машины, которые могут использовать стеклянные пробирки.

Видимая спектроскопия часто используется в промышленности для колориметрии. Используя этот метод, образцы измеряются на нескольких длинах волн от 400 до 700 нм, и их профили поглощения сравниваются со стандартом. Этот метод часто используется производителями текстиля и чернил. Другими коммерческими пользователями UV-Vis Spectroscopy являются судебно-медицинские лаборатории и принтеры.

В биологических и химических исследованиях растворы часто измеряются путем измерения степени поглощения света на определенной длине волны. Значение, называемое коэффициентом экстинкции, используется для расчета концентрации соединения. Например, лаборатории молекулярной биологии используют спектрофотометры для измерения концентрации образцов ДНК или РНК. Иногда у них есть продвинутый аппарат, называемый спектрофотометром NanoDrop ™, который использует долю количества образца по сравнению с тем, который используется традиционными спектрофотометрами.

Чтобы количественная оценка была действительной, образец должен соответствовать закону Бера-Ламберта. Это требует, чтобы поглощение было прямо пропорционально длине пути кюветы и поглощению соединения. Есть таблицы коэффициентов вымирания, доступные для многих, но не для всех соединений.

Многие химические и ферментативные реакции меняют цвет с течением времени, и спектрофотометры очень полезны для измерения этих изменений. Например, полифенолоксидазы, которые приводят к коричневому цвету плодов, окисляют растворы фенольных соединений, превращая прозрачные растворы в те, которые имеют видимую окраску. Такие реакции могут быть проанализированы путем измерения увеличения поглощения при изменении цвета. В идеале скорость изменения будет линейной, и по этим данным можно рассчитать показатели. Более продвинутый спектрофотометр будет иметь термостатированный кюветный держатель для проведения реакций при точной температуре, идеальной для фермента.

Микробиологические и молекулярно-биологические лаборатории часто используют спектрофотометр для измерения роста культур бактерий. Эксперименты по клонированию ДНК часто проводятся на бактериях, и исследователи должны измерить стадию роста культуры, чтобы знать, когда проводить определенные процедуры. Они измеряют поглощение, которое известно как оптическая плотность (OD), на спектрофотометре. По ОД можно судить, активно ли делятся бактерии или начинают ли они умирать.

Спектрофотометры используют источник света для освещения массива длин волн через монохроматор. Затем это устройство пропускает узкую полосу света, и спектрофотометр сравнивает интенсивность света, проходящего через образец, с интенсивностью света, проходящей через контрольное соединение. Например, если соединение растворяют в этаноле, эталоном будет этанол. Результат отображается как степень поглощения разности между ними. Это указывает на поглощение образца соединения.

Причиной такого поглощения является то, что как ультрафиолетовый, так и видимый свет имеют достаточно энергии для возбуждения химических веществ до более высоких уровней энергии. Это возбуждение приводит к более высокой длине волны, которая видна, когда поглощение наносится на график в зависимости от длины волны. Различные молекулы или неорганические соединения поглощают энергию на разных длинах волн. Те с максимальным поглощением в видимой области видны как окрашенные человеческим глазом.

Растворы соединений могут быть прозрачными, но поглощать в УФ-диапазоне. Такие соединения обычно имеют двойные связи или ароматические кольца. Иногда имеется один или несколько обнаруживаемых пиков, когда степень поглощения отображается в зависимости от длины волны. Если это так, это может помочь в идентификации некоторых соединений путем сравнения формы графика с формой известных контрольных графиков.

Существует два типа ультрафиолетовых спектрофотометров: однолучевой и двухлучевой. Они отличаются тем, как они измеряют интенсивность света между эталонным и тестовым образцом. Двухлучевые машины измеряют эталонный и тестовый состав одновременно, в то время как однолучевые машины измеряют до и после добавления тестируемого состава.